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We study the Friedman-Robertson-Walker model with phantom fields modeled in terms of scalar fields. We
apply the Ziglin theory of integrability and find that the flat model is nonintegrable. Then we cannot expect to
determine simple analytical solutions of the Einstein equations. We demonstrate that there is only a discrete set
of parameters where this model is integrable. For comparison we describe the phantoms fields in terms of the
barotropic equation of state. It is shown that in contrast to the phantoms modeled as scalar fields, the dynamics
is always integrable and phase portraits are contracted. In this case we find the duality relation.
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I. INTRODUCTION

The recently available measurements of luminosity dis-
tances of the type Ia supernova �SNIa� as a function of red-
shift have shown that the current Universe is in an acceler-
ating phase due to unknown form of repulsive energy �1,2�.
The most popular candidate for this dark energy is the cos-
mological constant. On the other hand, the results of large-
scale structure surveys and results of measurements of
masses of galaxies give the best fit for the density parameter
for matter �m,0=0.3 �3,4� �for review of cosmological pa-
rameters see Ref. �5��. Combining data from SNIa with mea-
surements of the cosmic microwave background �CMB� ra-
diation, we obtain ��,0=0.7 as the best fit value. The sum of
the densities �total,0=1.02±0.02 obtained by the Wilkinson
microwave anisotropy probe �WMAP� �6� agrees with the
value predicted by inflation and suggests that our Universe is
almost flat on the large scales. Therefore, the assumption of
the flat model with the cosmological constant is in good
agreement with our observations.

The acceleration of the Universe can be explained in a
twofold manner. In the first approach it is postulated that
there is some unknown exotic matter which violates the
strong energy condition �+3p�0, where p is the pressure
and � is the energy density of perfect fluid. This form of
matter is called dark energy. In the past few years different
scalar field models like quintessence and more recently the
tachyonic scalar field have been conjectured for modeling
the dark energy in terms of subnegative pressure p�−�. A
scalar field with supernegative pressure p�−� called a phan-
tom field can formally be obtained by switching the sign of

the kinetic energy in the Lagrangian for a standard scalar
field. For example in the Friedmann-Robertson-Walker
�FRW� model the phantom field minimally coupled to a
gravity field leads to �+ p=−�̇2, where ��=−1/2�̇2

+V��� , p�=−1/2�̇2−V���, and V��� is the phantom poten-
tial. Such a field was called the phantom field by Caldwell
�7� who proposed it as a possible explanation of the observed
acceleration of the current universe when �m,0	0.2. Note
that a coupling to gravity in the quintessence models was
also explored �8�.

The second approach called the Cardassian expansion
scenario has recently been proposed by Freese and Lewis �9�
as an alternative to the dark energy in order to explain the
current accelerated expansion of the Universe. In this sce-
nario the Universe is flat and matter dominated but the stan-
dard FRW dynamics is modified by the presence of an addi-
tional term �n such that 3H2=�eff=�+3B�n, where H
= �d ln a� /dt is the Hubble parameter and a is the scale fac-
tor. However, let us note that this additional term can be
interpreted as a phantom field modeled by the equation of
state p= p���= �n�1+
�−1��, where �=�m,0a−3�1+
�. There-
fore for dust matter we obtain p= �n−1��, and n�0 leads to
the phantom field.

The phantom scalar field can also be motivated from
S-brane in string theory �10–12�. The noncanonical kinetic
energy also occurs in higher-order theories of gravity and
supergravity �13,14�. At first, phantom fields were introduced
by bulk viscosity effects which can be present in FRW cos-
mology. They are equivalent to effective pressure peff= p
−3�H, where � is a bulk viscosity coefficient. It is because
dissipation in general relativity is connected �in contrast to
friction in classical mechanics� with the creation of the en-
ergy in the expanding Universe by the negative pressure con-
tribution �15,16�.

Without making some specific assumptions on w�z� it is
very difficult to constrain it from the SNIa data �17�. Because
the astronomical observations do not seem to exclude the
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phantom fields which violate the weak energy condition, it is
interesting to investigate the theoretical possibility to de-
scribe the dark energy in terms of a phantom field �18–35�.
The Cardassian expansion with n�0 which can be inter-
preted as the phantom fluid effect is also statistically admis-
sible from SNIa data observations �36�.

In this paper we ask what kind of dynamics can be ex-
pected from the FRW model with a phantom field. It is well
known that the standard FRW model reveals some complex
dynamics. The detailed studies gave us a deeper understand-
ing of the dynamical complexity and chaos in cosmological
models and resulted the in conclusion that complex behavior
depends on the choice of a time parameterization or a lapse
function in general relativity �37�. Castagnino et al. �38�
showed that the dynamics of closed FRW models with a
conformally coupled massive scalar field is not chaotic if
considered in the cosmological time. They showed that for
all initial conditions the Universe will collapse in finite time
and then conclude that there is no chaos in the model. In
their work the monotonously growing function is defined
along a trajectory which diverge at infinity for arbitrary ini-
tial conditions. The same model was analyzed in the confor-
mal time by Calzetta and Hasi �39� who presented the exis-
tence of chaotic behavior of trajectories in the phase space.

For the cosmological FRW model with a scalar field the
kinetic energy form is indefinite, therefore, the domain ad-
missible for motion is Rn. The similar situation happens in
the Bianchi IX in which, as it was proved by Cushman and
Sniatycki �40�, trajectories have no recurrence property.

The standard methods of the chaos investigation can also
be applied to the wide class of a relativistic system �41�.
Motter and Letelier �42� explained that this contradiction in
the results is obtained because the system under consider-
ation is nonintegrable. Therefore we can speak about com-
plex dynamics in terms of nonintegrability rather than deter-
ministic chaos. The significant feature is that nonintegrability
is an invariant evidence of dynamical complexity in general
relativity and cosmology �43–46�.

There are different motivations to study noningrability in
general relativity and cosmology. One reason is the possible
physical implications of the existence of complexity in the
systems which for example could help to explain the forma-
tion of structures. Another reason is to develop suitable tools
to study a relativistic system. The next motivation is to un-
derstand the ultimate implication of the time reparameteriza-
tion.

For the FRW model with a phantom it can be shown that
there is a monotonous function along its trajectories and it is
not possible to obtain the Lyapunov exponents or construct
the Poincaré sections. Therefore we turn to the study of non-
integrability of the phantom system and set it in a much
stronger form by proving that the system does not possesses
any additional and independent Hamiltonian first integrals,
which are in the form of analytic or meromorphic functions.
Of course, it is not the evidence of the sensitive dependence
of a solution on a small change of initial conditions. How-
ever, it is the possible evidence of complexity of dynamical
behavior formulated in an invariant way. We study noninte-
grability in the FRW model with phantom fields and find that
nonintegrability is a generic feature of this model and favors

rather nonanalytical forms of the equation of state.
It is useful to distinguish between solvability and integra-

bility. While integrability is an intrinsic property of the sys-
tem which imposes the constraints on the solutions in the
phase space, the solvability is related to the existence of
closed form solutions �47�. In this paper we concentrate on
first integrals rather than the solutions of a system.

We study nonintegrability instead of chaos because this
criterion is invariant with respect to time reparameterization.
Note that while this program of a nonintegrability investiga-
tion was explicitly formulated by Motter and Letelier �42�,
this idea was materialized in papers by Maciejewski and
Szydlowski �43–46�. Maciejewski and Szydlowski also
showed that the Bianchi VIII and IX are noningrable in the
sense of the nonexistence of additional analytic first integrals
�48� and that the Bianchi VIII model is nonintegrable in the
sense of the nonexistence of meromorphic first integrals �49�.
The meromorphic function possesses only poles as its singu-
larities; roughly speaking it is the quotient of analytic func-
tions. The latter method is used in this paper. Ziglin proved
the independently nonintegrability of the FRW closed model
with a scalar field in the sense of the nonexistence of addi-
tional meromorphic first integrals �50�. In turn, Morales Ruiz
and Ramis proved the nonintegrability of the Bianchi IX in
the same sense �51�.

For comparison we consider the FRW model with a phan-
tom given by the barotropic equation of state which violates
the weak energy condition. We obtain that this model is in-
tegrable in contrast to the previous treatment of phantom
cosmology. Assuming the barotropic form of the equation of
state for the phantom model we obtain the integrable dynam-
ics at the very beginning.

II. HAMILTONIAN DYNAMICS OF PHANTOM
COSMOLOGY

We assume the model with FRW geometry, i.e., the line
element has the form

ds2 = a2����− d�2 + d2 + f2���d�2 + sin2 �d�2�� , �1�

where

f�� = �sin  , 0 �  � � k = + 1

 , 0 �  � � k = 0

sinh  , 0 �  � � k = − 1
� . �2�

k=0, ±1 is the curvature index, 0���2� and 0���� are
comoving coordinates, and � stands for the conformal time
such that dt /a�d�.

It is also assumed that a source of gravity is the phantom
scalar field � with a generic coupling to gravity. The gravi-
tational dynamics is described by the standard Einstein-
Hilbert action

Sg = − 1
2mp

2� d4x	− g�R − 2�� , �3�

where mp
2 = �8�G�−1; for simplicity and without loss of gen-

erality we assume 4�G /3=1. The action for the matter
source is
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Sph = − 1
2 � d4x	− g�− g������ + 2U��� + �R�2� . �4�

Let us note that the formal sign of 
�
2 is opposite to that
which describes the standard scalar field as a source of grav-
ity, where U��� is a scalar field potential. We assume

U��� = 1
2m2�2 + 1

4��4 �5�

and that the conformal volume �d3x over the spatial three-
hypersurface is a unit. � is a coupling constant of scalar field
to the Ricci scalar

R = 6� ä

a3 +
k

a2 . �6�

If we have the minimally coupled scalar field then �=0.
We assume a nonminimal coupling of the scalar field ��0.

The dynamical equation for phantom cosmology in which
the phantom field is modeled by the scalar field with an
opposite sign of the kinetic term in action can be obtained
from the variational principle ��Sg+Sph�=0. After dropping
the full derivatives with respect to the conformal time we
obtain the dynamical equation for phantom cosmology from
variation ��Sg+Sph� /�g=0 as well as the dynamical equation
for field from variation ��Sg+Sph� /��=0,

�̈ + 3H�̇ =
dU

d�
+ �R� . �7�

It can be shown that for any value of � the phantom behaves
like some perfect fluid with the effective energy �� and the
pressure p� in the form which determines the equation of
state factor

w� =
− 1

2 �̇2 − U��� − ��2H��2�˙ + ��2�¨� − ��2�2Ḣ + 3H2�

− 1
2 �̇2 + U��� + 3�H�H�2 + ��2�˙�

�
p�

��

. �8�

Formula �8� differs from its counterpart for the standard sca-
lar field �52� by the presence of a negative sign in front of the

term �̇2.
The second derivative ��2¨ in the expression for the pres-

sure in Eq. �8�� can be eliminated and then we obtain

p� = �−
1

2
− 2��̇2 + �H��2�˙ + 2��6� − 1�Ḣ�2

+ 3��8� − 1�H2�2 − U��� + 2��
dU

d�
. �9�

Of course such perfect fluid which mimics the phantom field
satisfies the conservation equation

�̇� + 3H��� + p�� = 0. �10�

We can see that complexity of dynamical equation should
manifest by complexity of w�.

Let us consider the FRW quintessential dynamics with
some effective energy density �� given in Eq. �8�. By the
quintessence we usually understand models with dark energy

consisting of a dynamical cosmic scalar field. This dynamics
can be reduced to the form like of a particle in a one-
dimensional potential �53� and the Hamiltonian of the system
is

H�ȧ,a� =
ȧ2

2
+ V�a� � 0, V�a� = − ��a4. �11�

The trajectories of the system lie on the zero energy level for
flat and vacuum models. Note that if we additionally postu-
late the presence of radiation matter for which �r�a−4 then it
is equivalent to consider the Hamiltonian on the level H
=E=const. Of course the division on kinetic and potential
parts has only a conventional character and we can always

translate the term containing �̇2 into a kinetic term.
Let us consider now both case of conformally and mini-

mally coupled phantom fields.

A. Conformally coupled phantom fields

For conformally coupled phantom fields we put �=1/6
and rescale the field �→�=�a. Then the energy function
takes the following form for simple mechanical system with
a natural Lagrangian function L=1/2g��q̇�q̇�−V�q�,

E =
1

2
�ȧ2 + �̇2� −

�

2
a4 −

�

2
�4 − m2�2a2. �12�

In contrast to the FRW model with conformally coupled sca-
lar field the kinetic energy form is positive definite like for
classical mechanical systems. The general Hamiltonian
which represents the special case of two coupled nonhar-
monic oscillators system is

H = 1
2g��p�p� + V�q� = 1

2 �px
2 + py

2�

+ Ax2 + By2 + Cx4 + Dy4 + Ex2y2, �13�

where A ,B ,C ,D, and E are constants.

B. Minimally coupled phantom fields

For minimally coupled phantom fields ��=0� the function
of energy takes the form

E =
ȧ2

2
+

1

2
��̇a − �ȧ�2 −

�

4
a4 −

�

4
�4 −

1

2
m2�2a2, �14�

where �eff=−1/2�̇2+U��� ,V=−�effa
4 ,H=1/2ȧ2

+V�a ,� , �̇� ,�=a� ,U���=1/2m2�2+1/4��4 is assumed.
This time we parameterize the dynamics by taking variable �
in the original cosmological time and the Lagrangian func-
tion takes the following form:

L =
a�2

2
+

a2��2

2
−

1

2
m2�2a2 −

1

4
��4a2 −

1

4
�a2, �15�

where the prime denotes the differentiation with respect to
the cosmological time parameter t, and V=−�effa

2 ,�eff=
−1/2��2+U���.
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III. NONINTEGRABILITY AS AN INVARIANT FEATURE
OF PHANTOM COSMOLOGY WITH SCALAR

FIELD

For a given Hamiltonian system, it is difficult to show that
the system under consideration is nonintegrable. In general,
there are two formulations of necessary conditions for the
integrability presented by Ziglin �54,55� and Morales-Ruiz
and Ramis �56,57�. Both approaches are based on a deep
connection between the properties of the solutions in an en-
larged complex time plane and the existence of first integrals.
This idea originates from works of Kovalevskaya and
Lyapunov.

Let us study the general case of the Hamiltonian system
describing the conformally coupled phantom field in the
FRW model of the Universe. We have

H = 1
2 �p1

2 + p2
2� + V�q1,q2� ,

V�q1,q2� =
1

2
� �̄

2
q1

4 +
�̄

2
q2

4 − m2q1
2q2

2� , �16�

where q1=a ,q2=� , p1= ȧ , p2= �̇ , �̄=−�, and �̄=−�. This
Hamiltonian has the natural form in which the potential is a
homogeneous function of degree four with respect to both
variables a ,�.

From the point of view of complex dynamical behavior it
is useful to distinguish from the Hamiltonian �16� with m2

=−�2�0. This case is interesting because of spontaneous
symmetry breaking �58�. The Poincaré section in this case
can be obtained as well as the Lyapunov exponents. In this
model the chaotic behavior is present.

In other cases we can define by analogy to Castagnino
et al. �38� the monotonic function along the trajectories.
From this fact we obtain that the trajectories escape to infin-
ity and the system has no recurrence property which guar-
antes the topological transitivity �the standard chaos indica-
tors cannot be obtained�.

Motter and Letelier argued that the cosmological systems
with scalar fields are nonchaotic but complex in the sense of
nonintegrability �42�. Moreover the nonintegrability is an in-
variant property of system under the coordinate change.

In the second distinguished case the complexity has the
same character, and we apply the some tools to confirm the
Liouville nonintegrability of this system. The Liouville inte-
grability of the Hamiltonian system means that there is as
many functionally independent functions which are in invo-
lution �Poisson brackets vanish� as is the dimension of the
system.

Now we consider the problem of nonintegrability in both
cases. The nonintegrability of the nonflat first case with the
spontaneous symmetry breaking was investigated by Ziglin
��=�=0—the Yang-Mills potential� �50�. In turn, we apply
the Ziglin and Morales-Ruiz and Ramis methods to flat phan-
tom models with conformally coupled scalar fields with ar-
bitrary parameters.

The integrability of the Hamiltonian systems with a natu-
ral Lagrangian was analyzed in details by Yoshida �59–63� in
the framework of Ziglin’s approach. Later Yoshida’s results

were sharpened by Morales-Ruiz and Ramis �56�. Note that
we applied the Morales-Ruiz and Ramis result to system
�16�, but with the indefinite kinetic energy form T=1/2��p1

2

− p2
2�.
The counterpart of the Hamiltonian �16� for a standard

scalar field can be obtained after the canonical transforma-
tion of variables

q1 → Q1, p1 → P1,

and

q2 → iQ2, p2 → P2 = − ip2.

Then of course dp2∧dq2=dP2∧dQ2. However, in this case
the phase space is complex. Moreover, trajectories have no
recurrence property which guarantees the topological transi-
tivity, which an essential element of the standard understand-
ing of chaos.

The fundamental papers of Ziglin �54,55� gave the formu-
lation of a very basic theorem about nonintegrability of ana-
lytic Hamiltonian systems. The Ziglin idea connects proper-
ties of solutions on a complex time plane and the existence
of first integrals. This approach takes its origins in works of
Kovalevskaya and Lyapunov.

The Yoshida criterion is presented in the Appendix . We
apply this criterion to the analyzed system. Then the equation

q = V��q�, q = �q1,q2�

has the following solutions:

z1 = �±�̄−1/2,0� ,

z2 = �0, ± �̄−1/2�, z3 = �±	 �̄ + �

�̄�̄ − �2
, ±	 �̄ + �

�̄�̄ − �2
 .

The integrability indices for this points are

�i = − tr V��zi� − 3, i = 1,2,3

and

�1 =
�

�
, �2 =

�

�
, �3 =

�1�2 − 2��1 + �2� + 3

1 − �1�2
, � = m2.

�17�

Thus, from the Yoshida criterion it follows that if there exists
l� �1,2 ,3� such that �l�N4 then system �16� has no addi-
tional meromorphic first integral that is functionally indepen-
dent of H. Moreover, our previous application of the
Morales-Ruiz and Ramis result to the considered system
gives that if we introduce quantities �17� and three discrete
sets

I1 = �p�2p − 1��p � Z� ,

I2 = �1/8�− 1 + 16�1/3 + p�2��p � Z� ,

I3 = �1/2�3/4 + 4p�p − 1���p � Z� , �18�
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then if �1 ,�2 ,�3� I= I1� I2� I3 the system is nonintegrable.
Therefore, only for certain values of model parameters the
phantom cosmology is integrable. We can conclude that the
Liouville nonintegrability is the generic property of the sys-
tem.

If we consider a nonflat model then the effects of curva-
ture are negligible near the singularity and the considered
case describes a generic situation. In this way the phantoms
give rise to the complex dynamics in the sense of nonexist-
ence of a sufficient number of independent first integrals. As
a consequence, we can express some scepticism about pre-
diction for the equation of state factor w�z� in the presence of
the phantom component of the dark energy.

Our conclusion is that in a generic case the phantom sca-
lar field can produce the complex behavior. The complexity
of dynamics is formulated in terms of nonintegrability �i.e.,
nonexistence of an additional first integral� because a stan-
dard understanding of chaos has no significant physical
meaning in the context of a gauge freedom in the choice of a
lapse function �time parameterization�.

Beck �64� proposed an interesting idea that stochastically
quantized scalar fields can offer some solution to the cosmo-
logical coincidence problem of �. In this approach the cha-
otic fields have a classical equation of state close to p=−�,
i.e., that the chaotic fields naturally generate a small cosmo-
logical constant. It is possible that phantoms are just a phe-
nomenological description of this situation on a purely clas-
sical level.

Let us also note that the regular behavior of dynamics in
phantom cosmology can appear to be different from the con-
sidered types of potentials �65� but V�����2 is the simplest
one in which this phenomenon occurs. Moreover it can only
appear if we treat phantom energy in terms of a single scalar
field.

IV. PHANTOM COSMOLOGY IN TERMS OF THE
BAROTROPIC EQUATION OF STATE VIOLATING THE

WEAK ENERGY CONDITION

It is well known that for a given evolution of the model it
is possible to construct a potential for a minimally coupled
scalar field which would reproduce this cosmological evolu-
tion �66�. Sometimes it is possible to find that the explicit
form of a scalar field potential can reproduce the evolution
arising in some perfect fluid cosmological model �67�.

The very different picture is found, if we consider phan-
tom energy as a some kind of perfect fluid with supernega-
tive pressure then, in the contrast to the previous case, the
dynamics is regular at thevery beginning.

Let us consider the dynamics of the FRW models with
phantoms where the specific form of the equation of state for
phantom fluid is assumed. We model the fluid which violates
the weak energy condition using the equation of state p
=w� and w=const�−1. Such a model of fluid can be treated
as the simplest phenomenological model of phantom matter.

The dynamics of this model can be represented by a two-
dimensional dynamical system �therefore nonchaotic at very
beginning� on the phase plane �x , ẋ���x ,y� or by motion of
a classical particle in the one-dimensional potential V�x� :x
=a /a0 �53�, i.e.,

ẋ = y ,

ẏ = −
�V

�x
. �19�

System �19� has the first integral of energy in the form

ẋ2

2
+ V�x� = 0, �20�

where

V�x� = −
1

2
��m,0x−1 + �ph,0x−3�1+w�+2 + �k,0� . �21�

For the mixture of noninteracting matter and phantoms here
�i,0 is the density parameters at the present epoch. In the
general case the potential of the particle-universe takes the
form

V�x� = −
1

2�
i

�i,0x−3�1+wi�+2, �22�

where wi=−1 for the cosmological constant, wi=−1/3 for
string fluid �also curvature fluid�, and wi=−2/3 for topologi-
cal defects.

The phase portraits for the model described by system
�19� for the potential function �21� are shown on Fig. 1. The
trajectory of the flat model separates the regions of closed
��k,0�0� and open ��k,0�0� models. Moreover, both phase
portraits are topologically equivalent. The presence of addi-
tional terms like strings, topological defects �see Ref. �31��
do not change the structure of the phase plane. There is the
single critical point located on the x axis as an intersection
with the boundary of the strong energy condition �+3p�0.

Note that the obtained phase portraits are equivalent to
phase portraits of the FRW model with the cosmological
constant.

From the first integral �20� for the mixture of the cosmo-
logical constant and phantom type matter in the flat FRW
models we obtain the relation

�ln x�2 = � ẋ

x
2

= �ph,0x−3�1+w� + ��,0, �23�

which preserves its form structure under the change both a
position variable and a sign of the quintessential parameter
�w+1�,

x →
1

x
, �1 + w� → − �1 + w� . �24�

Therefore, if a phantom epoch exists its dynamics can repli-
cate the corresponding evolution for the subnegative equa-
tion of state �for example w=−4/3 corresponds to w=−2/3�.
From this kind of symmetry we obtain that if x�t� is the
solution of �23� for the subnegative equation of state p=w�

PHANTOM COSMOLOGY AS A SIMPLE MODEL WITH… PHYSICAL REVIEW E 72, 036221 �2005�

036221-5



then x−1�t� is also its solution for other form of the negative
equation of state p=−�w+2��. Let us note that for w=−1 the
duality relation which is motivated by superstring theory of
duality symmetries �68,69� is the exact symmetry of dynami-
cal equations.

V. CONCLUSIONS

This paper addressed the problem of complexity of the
flat FRW dynamics with phantom modeled in terms of scalar
fields. We proposed a criterion of nonintegrability in the
Liouville sense as an adequate measure of complexity of the
phantom cosmology. This approach is opted because the
gauge freedom in the choice of a time parameterization or a
lapse function unables us to discuss chaos in general relativ-
ity in the standard way. Nonintegrability is an invariant fea-

ture of a system and can be use as an indicator of its complex
dynamics.

We considered the two approaches to model the phantom
fields in the FRW model and showed how different dynamics
of the models are in these approaches. In the first approach
which could be called “microscopic” we used scalar fields in
modeling the pressure and energy density. In the second ap-
proach we used the explicit dependence of pressure versus
energy density, which can be called phenomenological and
found integrable dynamics in contrast to the nonintegrable
dynamics of the first approach.

In this context nonintegrability is a generic feature of the
phantom cosmology and only for a certain discrete set of
values of model parameters phantom cosmology is integrable
in the Liouville sense. From the physical point of view one
can interpret this property as the complexity of dynamical
behavior of trajectories in the phase space. Therefore we
cannot expect any simple analytical relation for solutions
�trajectories� of the system or the form of relation
p��̇ , ȧ ,� ,a� and ���̇ , ȧ ,� ,a� along the trajectories.

Nevertheless, the integrable cases with zero measure in
the space of all solutions exists, they can lead to some ana-
lytical dependence of p���, after the elimination of time. As
the example of simple analytical form of the equation of
state we considered the barotropic equation of state which
violates the weak energy condition. We obtained that this
model is integrable and exhibits the regular dynamics.

We conclude that nonintegrability which is a generic fea-
ture of the FRW model with phantom fields favors rather
nonanalytical forms of the equation of state. However, as-
suming the barotropic form of the equation of state for the
phantom model we obtain the integrable dynamics at very
beginning. We expect that phenomenological equation of
state can be realized by a microscopic scalar field with some
potential. Therefore, we assume at very beginning the exis-
tence of some relation �a first integral� between scalar fields,
its derivative and evolutional parameter of the Universe.
From the mathematical point of view this requirement means
the existence of some invariant in the phase space. If we
prove nonintegrability, than there no such relation in the con-
sidered class of potentials. If there is even a discrete set of
parameters for which the system is integrable we have hope
for finding this relation.
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APPENDIX: THE OUTLINE OF NONINTEGRABILITY
CRITERION

Here we present only the facts needed for a formulation of
a criterion in possibly simple settings. We consider a com-
plex symplectic manifold C2n with the canonical symplectic
structure �. A Hamiltonian vector field vH is determined by
a complex Hamiltonian function H :C2n→C by the relation
��vH , · �=dH. We assume that Hamilton’s analytic equations

FIG. 1. �Color online� The phase portraits for the FRW models
with phantom matter described by the equation of state p=w� for
�a� w=−4/3 and �b� w=−5/3. The dashed lines are the flat model
trajectories. The shaded region is the region of accelerated expan-
sion of the Universe. Note the topological equivalence of both
phase portraits.
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dz

dt
= vH�z�, z = �z1,…,z2n� � C2n, t � C , �A1�

have the nonequilibrium solution z=��t�. To simplify the
exposition we assume that this solution lies on a two-
dimensional invariant plane

� = ��z1,…,z2n� � C2n�zi = 0, i = 1,…,2�n − 1�� .

The phase curve �= ���t��C2n � t�C� is a Riemannian sur-
face with a local coordinate t. Together with equations �A1�
we consider also variational equations along solution ��t�,

d�

dt
= A�t��, A�t� =

�vH

�z
���t�� . �A2�

This system separates into the normal and the tangential sub-
systems. In our settings this separation takes a very simple
form—the matrix A�t� has a block diagonal structure. We
consider the normal variational equations �NVE�,

d�

dt
= B�t��, � � C2�n−1�, �A3�

where B�t� is 2�n−1��2�n−1� upper diagonal block of ma-
trix A�t�. We choose a point t0�C and a matrix of funda-
mental solutions of the NVE X�t�, defined in a neighborhood
of t0. With a close path � on complex time plane starting and
ending at point t0 we can associate a matrix S�GL(2�n
−1� ,C) in the following way. We integrate NVE �A3� along
the path �, i.e., we make an analytic continuation of X�t�
along this path. As a result from the fundamental solution
X�t� we obtain another fundamental solution Y�t�. From the
general theory of linear systems it follows that Y�t�=SX�t�
for some S�GL(2�n−1� ,C). Because the system is Hamil-
tonian, S is a symplectic matrix, i.e, S�Sp(2�n−1� ,C). In
this way, considering all possible paths, we obtain a matrix
representation of the first homotopy group �1��� of �. It
forms a finitely generated subgroup of Sp(2�n−1� ,C) and it
is called a monodromy group. We denote it M.

Let us take an element of the monodromy group g�M.
Its spectrum has the form

spectr�g� = ��1,�1
−1,…,�n−1,�n−1

−1 �, �i � C .

The element g is resonant if

�
l=1

n−1

�l
kl = 1 for some�k1,…,kn−1� � Zn−1 \ �0� .

Theorem 1 (Ziglin [54]) Let us assume that there exists a
nonresonant element g�M. If the Hamiltonian system pos-
sesses in a connected neighborhood of � n−1 meromorphic
first integrals which are functionally independent with H
then for an element g��M: if ge=�e for ��C and e
�C2�n−1�, then g�g�e�=���g�e� for some ���C.

In the case of a system with two degrees of freedom this
theorem can be formulated in a more operational way.

Theorem 2 Let us assume that there exists a non-resonant
element g�M. If there exists other element g��M such that

�1� trg��0 and gg��g�g, or
�2� trg�=0 and gg�g�g�,

then there is no additional meromorphic first integral func-
tionally independent of H in a connected neighborhood of �.

The main difficulty with the application of the Ziglin
theorem is the determination of the monodromy group of the
NVE. Only in very special cases we can do this analytically.
Yoshida �59–62� developed the Ziglin approach for these
cases when the Hamiltonian of a system has the natural form
and the potential is a homogeneous function. In this case a
particular solution can be found in the form of “straight line
solution” and the NVEs for it can be transformed to a prod-
uct of certain copies of hypergeometric equations for which
the monodromy group is known. This allows one to formu-
late adequate theorems in a form of an algorithm. Below we
describe it for the Hamiltonian system with two degrees of
freedom.

Consider the Hamiltonian

H = 1
2 �p1

2 + p2
2� + V�q1,q2�, �q1,q2,p1,p2� � C4, �A4�

where V�q1 ,q2� is the homogeneous function of degree k,
i.e.,

V�Cq1,Cq2� = CkV�q1,q2� . �A5�

In a generic case this system has a straight line solutions of
the form

q1 = C1��t�, q2 = C2��t� �A6�

where ��t� is a solution of a nonlinear equation

�̈ = − �k−1

and �C1 ,C2�� �0,0� are solutions of the following system:

C1 = �1V�C1,C2�, C2 = �2V�C1,C2� . �A7�

The variational equations take the form

� �̈

�̈
� = − �V11 V12

V21 V22
���

�
����t��k−2,

where Vij =�i� jV�C1 ,C2� for i , j=1 , 2 . Since the Hessian of
V is symmetric it is diagonalizable by an orthogonal trans-
formation and the system separates to

�̈ = − �1�k−2�t�� , �A8�

�̈ = − �2�k−2�t�� , �A9�

where �1 ,�2 are real eigenvalues of the Hessian. Let us note
that it is not true for indefinite systems where the Hessian is
not a symmetric matrix.

It can be shown that the Hessian of V at C= �C1 ,C2� has
the eigenvalue �1=k−1. Thus, its second eigenvalue is equal
�2=tr V�C1 ,C2�− �k−1�, and it is called the integrability in-
dex. Equation �A9� can be transformed to the hypergeomet-
ric equation. The monodromy matrices of this equation are
parameterized by � and conditions of the Ziglin theorem put
a restriction on values of �—simply, we can identify those
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values of � for which the system is not integrable �more
precisely: it does not possess an additional meromorphic first
integral�. To state it accurately let us define

Ik�p� = � k

2
p�p + 1� − p,

k

2
p�p + 1� + p + 1, p � N , �A10�

and

Nk = R \ �
p�N

Ik�p� . �A11�

Then it follows that Hamiltonian system �A4� with homog-
neous potential �A5� of degree k is not integrable if the inte-
grability index � corresponding to a certain straight line so-
lution �A6� belongs to Nk. Let us note that equations �A7�
usually have several solutions and thus it is necessary to
check the Yoshida criterion for each of them.
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